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Biostatistics Collaboration Center (BCC)

Mission: to support investigators in the conduct of high-quality, innovative 
health-related research by providing expertise in biostatistics, statistical 
programming, and data management.

How do we accomplish this?

1. Every investigator is provided a FREE initial consultation of 1-2 hours, subsidized by FSM Office 
for Research.  Thereafter: 

a) Grants 
b) Subscription 
c) Re-charge (Hourly) Rates

2. Grant writing (e.g. developing analysis plans, power/sample size calculations) is also supported 
by FSM at no cost to the investigator, with the goal of establishing successful collaborations.



BCC: Biostatistics Collaboration Center
What We Do

• Many areas of expertise, including: Many types of software, including:

- Bayesian Methods

- Big Data

- Bioinformatics

- Causal Inference

- Clinical Trials

- Database Design

- Genomics

- Longitudinal Data

- Missing Data

- Reproducibility

- Survival Analysis 



BCC: Biostatistics Collaboration Center
Shared Statistical Resources

Biostatistics Collaboration 
Center (BCC)

• Supports non-cancer research at 
NU

• Provides investigators an initial 
1-2 hour consultation subsidized 
by the FSM Office of Research

• Grant, Hourly, Subscription

Quantitative Data Sciences 
Core (QDSC)

• Supports all cancer-related 
research at NU

• Provides free support to all 
Cancer Center members 
subsidized by RHLCCC

• Grant

Biostatistics Research Core 
(BRC)

• Supports Lurie Children's 
Hospital affiliates

• Provides investigators statistical 
support subsidized by the 
Stanley Manne  Research 
Institute at Lurie Children's.

• Hourly



BCC: Biostatistics Collaboration Center

• Biostatistics Collaboration Center (BCC)

- Website: http://www.feinberg.northwestern.edu/sites/bcc/index.html

- Email: bcc@northwestern.edu

- Phone: 312.503.2288

• Quantitative Data Sciences Core (QDSC)

- Website: http://cancer.northwestern.edu/research/shared_resources/quantitative_data_sciences/index.cfm

- Email: qdsc_rhlccc@northwestern.edu

- Phone: 312.503.2288 

• Biostatistics Research Core (BRC)

- Website: https://www.luriechildrens.org/en-us/research/facilities/Pages/biostatistics.aspx

- Email: mereed@luriechildrens.org

- Phone: 773.755.6328

Shared Resources Contact Info

http://www.feinberg.northwestern.edu/sites/bcc/index.html
mailto:bcc@northwestern.edu
http://cancer.northwestern.edu/research/shared_resources/quantitative_data_sciences/index.cfm
mailto:qdsc_rhlccc@northwestern.edu
https://www.luriechildrens.org/en-us/research/facilities/Pages/biostatistics.aspx
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Time-to-Event Analysis: A ‘Survival’ Guide



• Time to death in a breast cancer trial

• Time to hospitalization of children with pneumonia

• Time to recurrence of ovarian tumors

• Time to remission from depressive symptoms

• Time to cessation of postoperative opioids

8

Studies involving survival analysis



Objectives of survival analysis

• Estimate survival 

- What is the probability of surviving 5 years post surgery?

• Compare survival between groups 

- Are there differences in survival between treatment groups? 

• Assess the relationship of covariates on the time-to-event

- How do clinical/behavioral characteristics affect survival? 



Why do we care about time-to-event? 

Recurrence of 
Tumor

No Recurrence of 
Tumor

Treatment A 25 40

Treatment B 30 35

Treatment A Treatment B

Time to Recurrence (months) 18.1 ± 2.1 8.5 ± 3.4

OR = 0.73 

P-value = 0.38 

Compare proportion of tumor 
recurrence between 
treatment groups:



Why not traditional methods for time-to-event data?

• Incomplete information 

• Not everyone experienced the event of interest

Recurrence of 
Tumor

No Recurrence
of Tumor

Treatment A 25 40

Treatment B 30 35

No time to event



• Compare mean time between groups? 

5                                      10                                    15                                     20
Time to Event (Months)                                   

Why not traditional methods for time-to-event data?

Treatment A Treatment B

Time to Recurrence (months) 18.1 ± 2.1 8.5 ± 3.4



• Compare proportion of events between groups 

- Chi-square test, logistic regression? 

- Ignores time 

• Compare mean time between groups

- T-test, linear regression?

- Not normally distributed

- Ignores subjects without events

Why not traditional methods for time-to-event data?



Calendar Time

Subjects

March 1 March 5



Subjects

Survival Time (Days/Weeks/Years)

4 days

Time 0



Follow-up Time 

• Defining time zero 

- Time at which participants are considered at risk 

- Enrollment into study 

- Time of randomization 

• Followed until

- Event occurs

- Study ends

- Participant is lost



Subjects

Survival Time (Days/Weeks/Years)



Subjects
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Subjects
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Censoring

• Right censoring (most common)

- Event occurs after a certain time point, but unknown how long after

- Study ends

- Lost to follow-up

- Subject withdraws



Censoring

• Left censoring 

- Event occurs before a certain time point, but unknown how much earlier

Survival Time (Days/Weeks/Years)



Censoring

• Interval censoring

- Only know that the event occurred within a certain interval of time  

Year 1 Year 2 Year 3  

+
?

+

+



Censoring

• Methods require assumption that censoring is independent of event process

- Patients censored representative of patients still at risk 

- Knowledge of censoring provides no information of survival at future time 

• Not independent? 

- Follow participants until death from lung cancer 

- Subject dies from another cancer



Basic Quantities
Survival Function 

Survival Curve

Time 0: Randomization of treatment  

Survival probability at time 0 = 1



Basic Quantities
Survival Function 

Rate of decline varies according to risk 
of experiencing the event 

• Probability of an 
individual surviving 
beyond a specified time 

• Never increases

• Defined up to the 
largest event time



Methods – Estimation

• Kaplan-Meier (Product Limit Estimator)

- No assumptions about shape

- Takes censored observations into account

- Common for medical studies

- Estimated for each unique failure time

Estimating survival probability 
Survival in patients with 

Acute Myelogenous
Leukemia

Event occurs
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Day 7

1 – 1/8 = 0.875

Day 12
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Day 7

1 – 1/8 = 0.875

0.875*(1 – 1/5) = 0.700
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Day At risk Events Estimate

7 8 1 0.875

12 5 1 0.700

15 4 1 0.525

20 2 1 0.263

22 1 1 0.000
Survival Time (Days)
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Day At risk Events Estimate

7 8 1 0.875

12 5 1 0.700

15 4 1 0.525

20 2 1 0.263

22 1 1 0.000

How can we interpret? 

• Estimate survival probability at specified time
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Day At risk Events Estimate

7 8 1 0.875

12 5 1 0.700

15 4 1 0.525

20 2 1 0.263

22 1 1 0.000

How can we interpret? 

• Estimate median failure time
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Day At risk Events Estimate 95% CI

5 22 2 0.909 0.68-0.98

8 20 2 0.818 0.59-0.93
.
.
.

18 13 1 0.629 0.39-0.80

23 12 2 0.524 0.29-0.71

27 10 1 0.472 0.25-0.67

30 8 1 0.413 0.20-0.62
.
.
.

Example
Estimating median failure time

Survival in patients with Acute Myelogenous Leukemia



Day At risk Events Estimate

7 8 1 0.875

12 5 1 0.700

15 4 1 0.525

20 2 1 0.263

22 1 0 --

What if last observation is censored? 

Survival Time (Days)
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Day At risk Events Estimate

7 8 1 0.875

12 5 1 0.700

15 4 1 0.525

20 2 0 --

22 1 0 --

Median failure time not always estimable 

Survival Time (Days)
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Basic Quantities
Hazard Function 
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Basic Quantities
Hazard Function 
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Basic Quantities
Hazard Function 

Survival Function Hazard Function



Basic Quantities
Hazard Function 

Hazard FunctionSurvival Function



Basic Quantities
Cumulative Hazard Function 

Hazard Function Cumulative Hazard



Basic Quantities
Hazard Function 

• Hazard Function

- Instantaneous failure rate at a specified time

- Measure of risk

- Non-negative

- Increasing, decreasing, or constant

• Cumulative Hazard

- Accumulation of risk up until a specified time

- Increasing or constant



Methods – Estimation 
Cumulative Hazard function

Survival in patients with advanced lung cancer 



Methods - Inference  
Comparing time-to-event between groups

Survival in patients with advanced lung cancer

Log Rank Test 

P-value = 0.001



Methods – Inference 
Comparing time-to-event between groups

Survival in randomized trial comparing treatments for ovarian cancer

Log Rank Test 

P-value = 0.303



Methods - Inference

• Adjust for another factor 

• Few levels of factor 

• Alternative to regression 
setting

Stratified Tests
Time to recurrence of colon cancer 

Log Rank Test

P-value < 0.0001



Methods - Inference
Stratified Tests

Stratify by Sex 

Males Females

Log Rank Test

P-value < 0.0001

Log Rank Test

P-value = 0.087



Methods 

• Regression Models 

• Cox Proportional Hazards Model 

- Exponential(coefficient) = hazard ratio

• Hazard Ratio < 1: Reduction in hazard (risk of event) relative to reference group

• Hazard Ratio > 1: Increase in hazard (risk of event) relative to reference group

Assessing relationship of covariates on time-to-event

Interpretation of Hazard Ratio 
depends on how you code your 

variables! 



Cox Proportional Hazards Model

• Proportional hazards model 

• Males have an increased risk of death 

• There is a 70.1% increase in the expected hazard for 
males compared to females

• The expected hazard is 1.701 times higher in males 
compared to females

Example

Coefficient Hazard Ratio P-value

Male 0.531 1.701 0.002

Survival in patients with advanced lung cancer

Log Rank Test 

P-value = 0.001



• Holding age constant, being male increases the expected hazard by 67%

• Holding sex constant, a one year increase in age is associated with a  2% increase in 
the expected hazard

• A ten year increase in age is associated with a  20% increase in the expected hazard

Cox Proportional Hazards Model
Example

Coefficient Hazard Ratio P-value

Male 0.513 1.671 0.002

Age (years) 0.017 1.017 0.065

Coefficient Hazard Ratio P-value

Age (10 years) 0.170 1.186 0.065



• Proportional hazards assumption 

- Hazard functions are proportional over time 

- Risk of death for males compared to females is constant over time

• Test for proportional hazards assumption 

- Assess graphically 

- Assess with interaction between variable and time 

- Assess with test of proportionality (available in some statistical packages)

Cox Proportional Hazards Model
Example



• Test for proportional hazards 

• Does not violate proportional hazards assumption

• What if assumption is violated? 

- Stratified analyses

- Interaction with time 

Cox Proportional Hazards Model
Example

P-value

Male 0.117



Other Topics

• Subjects can ‘fail’ from 
more than one cause

• Prevent observation 
of event of interest

• Alter probability of an 
event of interest

Competing Risks

Survival Time (Days/Weeks/Years)



Other Topics
Competing Risks

Survival Time (Days/Weeks/Years)

• Subjects can ‘fail’ from 
more than one cause

• Prevent observation 
of event of interest

• Alter probability of an 
event of interest



Other Topics

• Example: 

- Investigating death 
on dialysis

- Competing risk: 
receiving a kidney 
transplant

Competing Risks

Survival Time (Days/Weeks/Years)



Other Topics

• Multiple events 
occurring for one 
subject 

• Examples:

- Recurrent tumors

- Recurrent episodes 
of disease

Recurrent Events

Survival Time (Days/Weeks/Years)



Other Topics

• When survival 
outcomes are 
correlated among 
clustered individuals

• Model correlations 
between event times 
of same cluster

• Introduce random 
effects 

Frailty Models

Survival Time (Days/Weeks/Years)



References 

• Klein, JP and Moeschberger, ML. Survival Analysis: Techniques for Censored and Truncated Data. 
Second Edition. Springer, New York; 2003.  

• R Development Core Team (2008). R: A language and environment for statistical computing. R 
Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL http://www.R-
project.org.

• Other Survival Analysis Textbooks:

- Kleinbaum, DG. And Klein, M. Survival Analysis: A Self-Learning Text. Third Edition. Springer, New 
York; 2011.

- Moore, DF. Applied Survival Analysis Using R. Springer, New York; 2016. 

http://www.r-project.org/


BCC: Biostatistics Collaboration Center

• Request an Appointment

- http://www.feinberg.northwestern.edu/sites/bcc/contact-us/request-form.html

• General Inquiries

- bcc@northwestern.edu

- 312.503.2288

• Visit Our Website

- http://www.feinberg.northwestern.edu/sites/bcc/index.html

Contact Us

Biostatistics Collaboration Center |680 N. Lake Shore Drive, Suite 1400 |Chicago, IL 60611

http://www.feinberg.northwestern.edu/sites/bcc/contact-us/request-form.html
mailto:bcc@northwestern.edu
http://www.feinberg.northwestern.edu/sites/bcc/index.html


Your feedback is important to us! (And helps 
us plan future lectures). 

Complete the evaluation survey to be 
entered in to a drawing to win 2 free hours 
of biostatistics consultation.



Thank you for your participation in the BCC 
Statistically Speaking Lecture Series


