Statistically Speaking Lecture Series

Sponsored by the Biostatistics Collaboration Center
Time-to-Event Analysis: A 'Survival' Guide
Lauren C Balmert, PhD
Assistant Professor, Department of Preventive Medicine

BCC: Biostatistics Collaboration Center

Who We Are
 BCC Director

Elizabeth Gray, MS Stat. Analyst

Lauren Balmert, PhD Asst. Professor
 Stat. Analyst

Jody D. Ciolino, PhD Asst. Professor
 Senior Stat. Analyst

Kwang-Youn A. Kim, PhD Assoc. Professor

Tameka L. Brannon Financial | Research Administrator

Biostatistics Collaboration Center (BCC)

Mission: to support investigators in the conduct of high-quality, innovative health-related research by providing expertise in biostatistics, statistical programming, and data management.

How do we accomplish this?

1. Every investigator is provided a FREE initial consultation of 1-2 hours, subsidized by FSM Office for Research. Thereafter:
a) Grants
b) Subscription
c) Re-charge (Hourly) Rates
2. Grant writing (e.g. developing analysis plans, power/sample size calculations) is also supported by FSM at no cost to the investigator, with the goal of establishing successful collaborations.

BCC: Biostatistics Collaboration Center

What We Do

- Many areas of expertise, including:
- Bayesian Methods
- Big Data
- Bioinformatics
- Causal Inference
- Clinical Trials
- Database Design
- Genomics
- Longitudinal Data
- Missing Data
- Reproducibility
- Survival Analysis

Many types of software, including:
sas

BCC: Biostatistics Collaboration Center

Shared Statistical Resources

M Northustem Medicine ${ }^{\circ}$

NUCATS
Clinical and Translational Sciences Institute

Biostatistics Collaboration Center (BCC)

- Supports non-cancer research at NU
- Provides investigators an initial 1-2 hour consultation subsidized by the FSM Office of Research
- Grant, Hourly, Subscription

Kibilitylab

Stanley Manne Children's Research Institute-
(II) Ann \& Robert H. Lurie Children's Hospital of Chicago*

Biostatistics Research Core (BRC)

- Supports Lurie Children's Hospital affiliates
- Provides investigators statistical support subsidized by the Stanley Manne Research Institute at Lurie Children's.
- Hourly

BCC: Biostatistics Collaboration Center

Shared Resources Contact Info

- Biostatistics Collaboration Center (BCC)
- Website: http://www.feinberg.northwestern.edu/sites/bcc/index.html
- Email: bcc@northwestern.edu
- Phone: 312.503.2288
- Quantitative Data Sciences Core (QDSC)
- Website: http://cancer.northwestern.edu/research/shared resources/quantitative data sciences/index.cfm
- Email: qdsc rhlccc@northwestern.edu
- Phone:312.503.2288
- Biostatistics Research Core (BRC)
- Website: https://www.luriechildrens.org/en-us/research/facilities/Pages/biostatistics.aspx
- Email:mereed@|uriechildrens.org
- Phone: 773.755.6328

Time-to-Event Analysis: A 'Survival' Guide

Studies involving survival analysis

- Time to death in a breast cancer trial
- Time to hospitalization of children with pneumonia
- Time to recurrence of ovarian tumors
- Time to remission from depressive symptoms
- Time to cessation of postoperative opioids

Objectives of survival analysis

- Estimate survival
- What is the probability of surviving 5 years post surgery?
- Compare survival between groups
- Are there differences in survival between treatment groups?
- Assess the relationship of covariates on the time-to-event
- How do clinical/behavioral characteristics affect survival?

Why do we care about time-to-event?

	Recurrence of Tumor	No Recurrence of Tumor
Treatment A	25	40
Treatment B	30	35

Compare proportion of tumor recurrence between

$$
\begin{gathered}
\mathrm{OR}=0.73 \\
\mathrm{P} \text {-value }=0.38
\end{gathered}
$$

	Treatment A	Treatment B
Time to Recurrence (months)	18.1 ± 2.1	8.5 ± 3.4

Why not traditional methods for time-to-event data?

- Incomplete information
- Not everyone experienced the event of interest

No time to event

Why not traditional methods for time-to-event data?

- Compare mean time between groups?

	Treatment A	Treatment B
Time to Recurrence (months)	18.1 ± 2.1	8.5 ± 3.4

Why not traditional methods for time-to-event data?

- Compare proportion of events between groups
- Chi-square test, logistic regression?
- Ignores time
- Compare mean time between groups
- T-test, linear regression?
- Not normally distributed
- Ignores subjects without events

Follow-up Time

- Defining time zero
- Time at which participants are considered at risk
- Enrollment into study
- Time of randomization
- Followed until
- Event occurs
- Study ends
- Participant is lost

Censoring

- Right censoring (most common)
- Event occurs after a certain time point, but unknown how long after
- Study ends
- Lost to follow-up
- Subject withdraws

Censoring

- Left censoring
- Event occurs before a certain time point, but unknown how much earlier

Censoring

- Interval censoring
- Only know that the event occurred within a certain interval of time

Censoring

- Methods require assumption that censoring is independent of event process
- Patients censored representative of patients still at risk
- Knowledge of censoring provides no information of survival at future time
- Not independent?
- Follow participants until death from lung cancer
- Subject dies from another cancer

Basic Quantities

Survival Function

Time 0: Randomization of treatment

Basic Quantities

Survival Function

- Probability of an individual surviving beyond a specified time
- Never increases
- Defined up to the largest event time

Methods - Estimation

Estimating survival probability

- Kaplan-Meier (Product Limit Estimator)

Survival in patients with
Acute Myelogenous
Leukemia

- No assumptions about shape
- Takes censored observations into account
- Common for medical studies
- Estimated for each unique failure time

1.00
0.90
0.80
0.70

$$
1-1 / 8=0.875
$$

$\begin{array}{ll} \frac{\lambda}{2} & 0.75 \\ \frac{\overline{0}}{0} & \\ \frac{0}{0} & \\ \frac{2}{0} & 0.50 \end{array}$					Day	At risk	Events	Estimate
					7	8	1	0.875
					12	5	1	0.700
					15	4	1	0.525
$\stackrel{0.25}{ }$					20	2	1	0.263
0.00				20	22	1	1	0.000
	5	10	15					
Survival Time (Days)								

How can we interpret?

- Estimate survival probability at specified time

How can we interpret?

- Estimate median failure time

Example

Estimating median failure time

Survival in patients with Acute Myelogenous Leukemia

What if last observation is censored?

Day	At risk	Events	Estimate
7	8	1	0.875
12	5	1	0.700
15	4	1	0.525
20	2	1	0.263
22	1	0	--

Median failure time not always estimable

Day	At risk	Events	Estimate
7	8	1	0.875
12	5	1	0.700
15	4	1	0.525
20	2	0	--
22	1	0	--

Basic Quantities

Hazard Function

Basic Quantities

Hazard Function

Basic Quantities

Hazard Function

Basic Quantities

Hazard Function

Survival Function

Hazard Function

Basic Quantities

Hazard Function

Basic Quantities

Cumulative Hazard Function

Basic Quantities

Hazard Function

- Hazard Function
- Instantaneous failure rate at a specified time
- Measure of risk
- Non-negative
- Increasing, decreasing, or constant
- Cumulative Hazard
- Accumulation of risk up until a specified time
- Increasing or constant

Methods - Estimation

Cumulative Hazard function

Survival in patients with advanced lung cancer

Methods - Inference

Comparing time-to-event between groups
Survival in patients with advanced lung cancer

[^0]
Methods - Inference

Comparing time-to-event between groups

Survival in randomized trial comparing treatments for ovarian cancer

[^1]
Methods - Inference

Time to recurrence of colon cancer

- Adjust for another factor
- Few levels of factor
- Alternative to regression setting

Methods - Inference

Stratified Tests

Stratify by Sex

Males
Treatment $+A+B$

Females

Methods

Assessing relationship of covariates on time-to-event

- Regression Models
- Cox Proportional Hazards Model
- Exponential(coefficient) = hazard ratio
- Hazard Ratio < 1: Reduction in hazard (risk of event) relative to reference group
- Hazard Ratio > 1: Increase in hazard (risk of event) relative to reference group

Interpretation of Hazard Ratio depends on how you code your variables!

Cox Proportional Hazards Model

Example

Survival in patients with advanced lung cancer

- Proportional hazards model

	Coefficient	Hazard Ratio	P-value
Male	0.531	1.701	0.002

Sex + Male + Female

- Males have an increased risk of death
- There is a 70.1% increase in the expected hazard for males compared to females
- The expected hazard is 1.701 times higher in males compared to females

Cox Proportional Hazards Model

Example

	Coefficient	Hazard Ratio	P-value
Male	0.513	1.671	0.002
Age (years)	0.017	1.017	0.065

- Holding age constant, being male increases the expected hazard by 67\%
- Holding sex constant, a one year increase in age is associated with a 2% increase in the expected hazard

	Coefficient	Hazard Ratio	P-value
Age (10 years)	0.170	1.186	0.065

- A ten year increase in age is associated with a 20% increase in the expected hazard

Cox Proportional Hazards Model

Example

- Proportional hazards assumption
- Hazard functions are proportional over time

	Coefficient	Hazard Ratio	P-value
Male	0.531	1.701	0.002

- Risk of death for males compared to females is constant over time
- Test for proportional hazards assumption
- Assess graphically
- Assess with interaction between variable and time
- Assess with test of proportionality (available in some statistical packages)

Cox Proportional Hazards Model

Example

	Coefficient	Hazard Ratio	P-value
Male	0.531	1.701	0.002

- Test for proportional hazards

	P-value
Male	0.117

- Does not violate proportional hazards assumption
- What if assumption is violated?
- Stratified analyses
- Interaction with time

Other Topics

 Competing Risks- Subjects can 'fail' from more than one cause
- Prevent observation of event of interest
- Alter probability of an event of interest

Other Topics

 Competing Risks- Subjects can 'fail' from more than one cause
- Prevent observation of event of interest
- Alter probability of an event of interest

Other Topics

 Competing Risks- Example:
- Investigating death on dialysis
- Competing risk: receiving a kidney transplant

Other Topics

Recurrent Events

- Multiple events occurring for one subject
- Examples:
- Recurrent tumors
- Recurrent episodes of disease

Survival Time (Days/Weeks/Years)

Other Topics Frailty Models

- When survival outcomes are correlated among clustered individuals
- Model correlations between event times of same cluster
- Introduce random effects

Survival Time (Days/Weeks/Years)

References

- Klein, JP and Moeschberger, ML. Survival Analysis: Techniques for Censored and Truncated Data. Second Edition. Springer, New York; 2003.
- R Development Core Team (2008). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL http://www.Rproject.org.
- Other Survival Analysis Textbooks:
- Kleinbaum, DG. And Klein, M. Survival Analysis: A Self-Learning Text. Third Edition. Springer, New York; 2011.
- Moore, DF. Applied Survival Analysis Using R. Springer, New York; 2016.

BCC: Biostatistics Collaboration Center

Contact Us

- Request an Appointment
- http://www.feinberg.northwestern.edu/sites/bcc/contact-us/request-form.html
- General Inquiries
- bcc@northwestern.edu
- 312.503.2288
- Visit Our Website
- http://www.feinberg.northwestern.edu/sites/bcc/index.html

Biostatistics Collaboration Center |680 N. Lake Shore Drive, Suite 1400 |Chicago, IL 60611

Your feedback is important to us! (And helps us plan future lectures).

Complete the evaluation survey to be entered in to a drawing to win 2 free hours of biostatistics consultation.

Thank you for your participation in the BCC Statistically Speaking Lecture Series

[^0]: M Northwestern Medicine
 Feinberg School of Medicine

[^1]: M Northwestern Medicine
 Feinberg School of Medicine

