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 Investigators from the University Leipzig and 
University of Tübingen report mutations of KCNA2 as a 
novel cause of epileptic encephalopathy. They identified 
four de novo mutations in KCNA2 in six unrelated patients 
using next generation sequencing. 
 Four individuals had KCNA2 mutations that 
resulted in dominant-negative loss of protein function.  
Seizure onset was at 8-17 months. EEG became abnormal 
with multifocal epileptiform discharges. All had delayed 
speech development and mild to moderate intellectual 
disability. All became seizure free between 4-15 years of 
age. Two additional individuals presented with a more 
severe epileptic encephalopathy phenotype. They had an 
earlier age of onset, pharmacoresistant seizures, generalized 
epileptiform discharges with background slowing on EEG, 
moderate to severe intellectual disability, and moderate to 
severe ataxia. KCNA2 mutations associated with the more 
severe phenotype resulted in pronounced gain-of-function 
effects. [1] 
 
COMMENTARY. KCNA2 joins a growing list of voltage-
gated potassium channel genes associated with epileptic 
encephalopathy, including KCNQ2, KCNQ3, KCNT1 and 
KCNB1 [1-4]. KCNA2 encodes KV1.2, a voltage-gated 
potassium channel subunit that contributes to repolarization 
of the neuronal membrane following an action potential. 
Mutations in KCNA2 that interfere with normal Kv1.2 
function result in impaired electrical signaling and altered 
membrane excitability. Loss-of-function mutations are 
predicted to impair membrane repolarization, resulting in 
neuronal hyperexcitability and a propensity for repetitive 
firing. Consistent with this, complete absence of KV1.2 in 
homozygous mice resulted in spontaneous seizures and 
premature death, and heterozygous deletion resulted in 
increased seizure susceptibility [5]. Mutations were also 
identified that exhibited gain-of-function effects [1]. At the 
level of a single neuron, the observed effects predict KV1.2 
channels that are open at resting membrane potentials, 
resulting in neuronal hypoexcitability. However, based on 
the more severe phenotype of the patients, the net effect 
within neuronal networks is hyperexcitability. Additional 
studies will be required to determine the effect of KCNA2 
mutations at the level of the network. 

     Thus far, the phenotypes associated with KCNA2 
mutations comprise two distinct groups based on age of 
onset, seizure semiology, and electroclinical features. These 
distinctive clinical phenotypes appear to correlate with 
differential effects of the mutations on protein function [1]. 
Patients with gain-of-function mutations have a more severe 
phenotype and do not achieve seizure freedom. In contrast, 
patients with loss-of-function mutations have later seizure 
onset, and achieve seizure freedom in childhood. This 
nascent genotype-phenotype correlation is reminiscent of 
KCNQ2-associated epileptic encephalopathy, where loss-of-
function mutations are associated with neonatal onset, while 
gain-of-function mutations are associated with infantile 
onset [3,6]. Studies with KCNA2 mutations from additional 
patients will be required to confirm the genotype-phenotype 
relationship. If the relationship holds, it will be useful for 
predicting disease progression and guiding management.  
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