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Introduction

Arsenic trioxide (As
2
O

3
) has major clinical activity in the treat-

ment of refractory acute promyelocytic leukemia (APL), at gener-
ally well tolerated doses.1-4 Its introduction in the treatment of 
this form of acute myeloid leukemia (AML) has had a dramatic 
impact in the management and outcome of this disease,1-4 but has 
not been extended to the treatment of other hematological malig-
nancies. There have been trials to test its efficacy in other non-
APL subtype refractory or relapsed AML cases, but in these cases 
arsenic trioxide had no significant clinical activity.5 Such lack of 
responses in non-APL cases may well be a reflection of the rela-
tive resistance and the requirement for high concentrations for 
arsenic-induced apoptosis.6 Other recent evidence has suggested 
that beyond apoptosis, induction of autophagy may be a major 
mechanism for the generation of the antileukemic properties of 
arsenic trioxide,7-9 underscoring the complexity and diversity of 
mechanisms that may account for leukemic cell resistance to its 
effects.

The MEK-ERK pathway is constitutively activated in the 
majority of primary AML cases and has been the focus of 
clinical-translational interest for the treatment of AML.10 MEK 
is downstream of the RAS/RAF pathway,10 which is activated 
in AML by RAS mutations, as well as mutations or overexpres-
sion of upstream receptor tyrosine kinases such as FLT3.11,12 The 
downstream effector of MEK, ERK1/2, is active in the majority 
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of patients with AML.13 An important group of ERK substrates 
includes the RSK (90 kDa ribosomal S6 kinase) family of kinases 
(RSK 1–4), whose activities regulate cellular effectors that pro-
mote cell growth and survival.14

In previous work we had shown that the p38 MAPK pathway 
and various upstream and downstream effectors of this pathway 
act as negative feedback regulators for As

2
O

3
-induced antileuke-

mic responses,15-19 while others have shown that targeting MEK/
ERK pathways promotes the pro-apoptotic effects of arsenic 
trioxide in multiple myeloma cells.20 RSK1 is a kinase activated 
downstream of the MEK/ERK and the PI3'K-PDK1 pathways 
and mediates important downstream signals.21

In the present study we examined the effects of As
2
O

3
-

treatment of AML cells on the activation of RSK1 and the gen-
eration of arsenic-dependent antileukemic responses. Our data 
demonstrate that during treatment of different AML cell lines 
with arsenic trioxide there is phosphorylation/activation of 
RSK1. Combinations of an RSK1 inhibitor with arsenic trioxide 
were found to result in more potent suppression of leukemic pro-
genitor colony formation than each agent along, suggesting that 
RSK1 is activated in a negative feedback regulatory manner to 
counteract arsenic-dependent antileukemic responses. Similarly, 
increased arsenic-dependent antileukemic effects in vitro were 
seen in cells in which RSK1 was knocked down. Altogether, 
our findings identify RSK1 as a potentially important target to 
enhance the antileukemic properties of arsenic trioxide.
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precursor (CFU-L) colony formation (Fig. 3A). Moreover, con-
sistent with these findings, shRNA knockdown of RSK1 in 
U937 cells (Fig. 3B) resulted in more potent inhibitory effects on 
U937-derived leukemic CFU-L progenitors (Fig. 3C).

In subsequent studies we evaluated the effects of pharma-
cological inhibition of RSK1 on primary leukemic progenitors 
from AML patients. Peripheral blood mononuclear cells from 
six patients with AML were isolated, and the effects of the RSK 
inhibitor BI-D1870 on primitive leukemic precursors (CFU-L) 
were determined. As shown in Figure 4A, BI-D1870 exhibited 
potent suppressive effects on primary leukemia progenitors and 
such effects were enhanced by the co-treatment with As

2
O

3
 

(Fig. 4A). Importantly, no significant suppressive effects in 
response to BI-D1870 used alone or in combination with As

2
O

3
 

(0.5 μM) treatment were seen on normal CD34+ derived myeloid 
progenitors (CFU-GM) (Fig. 4B). Similarly, BI-D1870 at con-
centrations of 0.5 to 2.0 μM did not suppress normal erythroid 
BFU-E colony formation, although there was some inhibition 
seen by As

2
O

3
 (0.5 μM) alone or in combination of BI-D1870 

(Fig. 4B). Thus, combined targeting of RSK1 with arsenic triox-
ide treatment results in enhanced in vitro responses against primi-
tive leukemic progenitors, but not normal myeloid hematopoietic 
progenitors, suggesting an approach to enhance the antileukemic 
effects of arsenic by combinations with RSK1 inhibitors.

Discussion

There has been extensive prior evidence that activation of the 
MEK/ERK pathway in AML cells is important for the trans-
mission of proliferative signals that promote leukemogenesis and 
that targeting MEK/ERK pathways and effectors may provide a 
unique approach for the treatment of leukemias.27-31 A particular 
component of this pathway, the RSK family of proteins, has been 
recently the focus of attention, as there is evidence that this group 
of MEK/ERK effectors play key regulatory roles in malignant 
cell proliferation and survival.14,32 Beyond the 4 RSK isoforms 
(RSK 1–4), this family includes two other kinase members, 
MSK1 and MSK2, whose structures are distinct, but structurally 
related to the RSK isoforms.32

There is a substantial amount of emerging evidence that the 
functions of members of the RSK family of kinases are important 

Results

In initial studies we examined the effects of As
2
O

3
 treatment on 

the phosphorylation status of RSK1 in different acute myeloid 
leukemia cell lines. When the U937 (Fig. 1A), MM6 (Fig. 1B) 
or NB4 (Fig. 1C) AML cell lines were treated with As

2
O

3
, we 

found that there was time-dependent induction of phosphory-
lation of RSK1 (Fig. 1). Such phosphorylation was rapid, 
occurring within 15 min of treatment of cells. Maximum phos-
phorylation was detected at approximately 15 to 30 min and the 
signal subsequently declined, although it was still detectable at 
90 min (Fig. 1). The finding that As

2
O

3
 induces phosphoryla-

tion of RSK1 in various AML cell lines raised the possibility that 
this kinase may be activated during arsenic-treatment of cells in a 
negative-feedback regulatory manner, similarly to what has been 
previously shown for other arsenic-induced negative feedback 
pathways.15-19,22-24

To examine the role of RSK1 in the generation of As
2
O

3
-

induced functional responses, experiments were performed 
in which U937 leukemia cells were treated in the presence or 
absence of As

2
O

3
 and/or the RSK inhibitor BI-D1870 and cell 

viability was determined by MTT assays. The combination of 
As

2
O

3
 with BI-D1870 significantly inhibited cell proliferation/

viability when compared with either As
2
O

3
 or BI-D1870 alone 

(Fig. 2A). Similarly, when induction of apoptosis was assessed 
by propidium iodide/annexin V staining, we found that the 
combination As

2
O

3
 with BI-D1870 significantly increased the 

percentage of apoptotic cells as compared with treatment with 
either As

2
O

3
 or BI-D1870 alone (Fig. 2B). The pro-apoptotic 

member of the Bcl-2 family,25 BAD, is a known substrate of 
RSK1 and undergoes phosphorylation at Ser112, resulting in 
an anti-apoptotic signal.26 Treatment of U937 cells with arse-
nic trioxide induced phosphorylation of BAD at Ser112. Such 
phosphorylation was inhibited by co-treatment of the cells with 
BI-D1870, strongly suggesting that such phosphorylation is 
RSK1-dependent (Fig. 2C) and indicating a mechanism for the 
enhancement of apoptosis by the arsenic/BI-D1870 combination.

We next assessed the effects of combinations of As
2
O

3
 with 

BI-D1870 on primitive leukemic precursors in clonogenic assays 
in methylcellulose. BI-D1870 significantly enhanced the sup-
pressive effects of As

2
O

3
 on U937-derived primitive leukemic 

Figure 1. as2O3 induces phosphorylation of RsK1. U937 (A), MM6 (B) and NB4 (C) cells were treated with as2O3 for the indicated times. Upper panels: 
total cell lysates were resolved by sDs-paGe and immunoblotted with an antibody against the phosphorylated form of RsK1 on ser 221. Lower panels: 
equal amounts of cell lysates from the same experiments shown in the upper panels were analyzed separately by sDs-paGe and immunoblotted with 
an anti-RsK1 antibody, as indicated.
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The combination of RSK inhibition with the specific inhibition 
of the mTOR axis warrants further investigation.

In the present study we provide evidence that RSK1 is acti-
vated by As

2
O

3
 during treatment of AML cells in a negative 

feedback regulatory manner. Our data also demonstrate that 
pharmacological inhibition of RSK results in enhanced As

2
O

3
-

dependent suppression of proliferation and increased apoptosis 
of leukemia cell lines. Furthermore, molecular silencing of RSK1 
was found to result in significant suppressive effects on U937-
derived primitive leukemic progenitors. Pharmacological inhi-
bition of RSK activity also enhanced the suppressive effects of 
As

2
O

3
 on primary leukemic (CFU-L) progenitors from AML 

patients, underscoring the relevance of this family of kinases 
in leukemogenesis. Such enhanced suppression was not seen on 
normal human hematopoietic precursors, suggesting specific-
ity toward leukemia cells and further raising the possibility for 
clinical-translational approaches involving RSK1 targeting to 
promote arsenic-dependent antileukemic effects.

for control of cell proliferation, cell cycle progression, transcrip-
tional regulation, protein synthesis and cell survival.32 At the 
same time there is an accumulating list of proteins that appear 
to function as substrates for these kinases and ultimate media-
tors of biological responses.32 There is also emerging evidence for 
important roles for members of the RSK family in tumorigen-
esis and leukemogenesis.32 Notably, a recent study demonstrated 
that RSK2 is essential for FLT3-ITD leukemic transformation, 
although it was found to be dispensable for BCR-ABL leukemo-
genesis.33 Various downstream regulatory events may account 
for the transforming/pro-neoplastic activities of members of the 
RSK family, including regulatory effects on p27kip1;32,34 phos-
phorylation and subsequent degradation of Mad1, a suppressor of 
Myc activity;34,35 and regulatory effects on the mTOR pathway 
via phosphorylation of Tsc-236 or Raptor in the mTORC1 com-
plex.37 Notably, mTOR complexes and downstream mediators 
are often dysregulated in hematological malignancies and, there-
fore, have become important targets for drug development.38-40 

Figure 2. Inhibition of RsK enhances as2O3-mediated suppression of growth and apoptosis. (A) U937 cells were treated with the indicated doses of 
as2O3 in the presence (dashed line) or absence (continuous line) of the RsK inhibitor BI-D1870 (1 μM) for 4 d. Cell viability was determined by MTT 
assays. Data are expressed as percent of untreated controls for the different conditions. The means ± se of the values from 3 experiments are shown. 
(B) U937 cells were treated with the indicated concentrations of as2O3 in the absence or presence of BI-D1870 (2 μM). apoptosis was determined by 
flow cytometry studies for propidium iodide/annexin V staining. The means ± se of the values from 3 experiments are shown. (C) U937 cells were 
cultured in the presence or absence of as2O3 for 60 min, in the presence or absence of BI-D1870 (2 μM). Total cell lysates were resolved by sDs-paGe 
and immunoblotted with anti-phospho-ser 112-BaD antibody. The same blot was then stripped and re-probed with an anti-BaD antibody.
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leukemia cells and should be considered a potential therapeutic 
target to enhance the antileukemic action of As

2
O

3
 in AML and 

possibly other leukemias.

Materials and Methods

Cells and reagents. The U937, MM6 and NB4 human cell lines 
were grown in RPMI 1640 medium supplemented with 10% 
fetal bovine serum and antibiotics. Arsenic trioxide (As

2
O

3
) was 

purchased from Sigma. Antibodies against RSK1 and BAD and 
the phosphorylated forms of RSK1 (Ser-221) and BAD (Ser112) 
were obtained from Cell Signaling Technology, Inc. Antibodies 
against glyceraldehyde-3-phosphate dehydrogenase (GAPDH) 
were obtained from EMD Millipore. The RSK inhibitor, 
BI-D1870 was obtained from Symansis. The MEK1/2 inhibitor 

It is of particular interest that among other negative feedback 
induced by arsenic is another member of the broad RSK family, 
Msk1.18 Also, we have previously reported that the mTOR path-
way is another arsenic-inducible negative-feedback pathway,22,23 
while others have shown in other systems that mTOR activation 
is also regulated by RSK kinases under certain circumstances.36,37 
This suggests some redundancy in the patterns of induction of 
negative feedback regulatory signals and raises the possibility that 
simultaneous targeting of more than one negative feedback loops 
will be likely necessary to fully overcome leukemic cell resistance 
to As

2
O

3
 in vitro and in vivo. Nevertheless, this remains to be 

directly established in future studies. Independently of whether 
this hypothesis proves to be correct, our findings clearly establish 
that the downstream substrate of the MEK-ERK pathway, RSK1, 
is a contributor to the negative regulation of As

2
O

3
-responses in 

Figure 3. pharmacological or molecular targeting of RsK1 enhances as2O3 -dependent suppression of aML leukemic precursors. (A) U937 cells were 
cultured with the indicated concentrations of as2O3, in the presence (dashed line) or absence (continuous line) of BI-D1870 (1 μM) and leukemic pro-
genitor colony formation was assessed in clonogenic assays in methylcellulose. Data are expressed as percent control colony formation for each con-
dition (untreated or BI-D1870 treated). The means ± se of the values from 3 experiments are shown. (B) Knockdown of RsK1 in U937 cells using RsK1 
specific shRNa. (C) U937 cells transfected with RsK1 shRNa or control shRNa were cultured in the presence or absence of as2O3 0.5 μM and leukemic 
progenitor colony formation was assessed in clonogenic assays in methylcellulose. The means ± se of the values from 3 experiments are shown. (*p < 
0.05, using a paired 2-tailed t-test).
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U0126 and the PI3K inhibitor LY294002 were purchased from 
Calbiochem/EMD Millipore. Lentiviral human RSK1 and 
non-targeted control shRNAs were purchased from Santa Cruz 
Biotechnology, Inc.

Cell lysis and immunoblotting. Cells were treated with the 
indicated doses of As

2
O

3
 for the indicated times and subse-

quently lysed in the phosphorylation lysis buffer as previously 
described.22-24 In the experiments in which pharmacological 
inhibitors were used, the cells were pre-treated for 60 min with 
the inhibitors at the indicated final concentrations of inhibitors 
and subsequently treated for the indicated times with As

2
O

3
, 

in the continuous presence of the inhibitors, prior to cell lysis 
in phosphorylation lysis buffer. Immunoblotting using an 
enhanced chemiluminescence (ECL) method was done as previ-
ously described.41-45

Cell proliferation/viability assays. Cells were treated with the 
indicated doses of As

2
O

3
, in the presence or absence of BI-D1870 

(0.5–4 μM), for 7 d. Cell proliferation/viability assays using the 
3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-tetrazolium bromide 
(MTT) method were performed as in our previous studies.46

Evaluation of apoptosis. Cells were exposed to the indicated 
doses of As

2
O

3
 for the indicated time periods. Flow cytometric 

assays to evaluate apoptosis by propidium iodide/annexin V 
staining were done as previously described.47 

Hematopoietic cell progenitor assays. Peripheral blood 
from patients with AML was collected after obtaining consent 
approved by the Institutional Review Board of Northwestern 
University. The effects of arsenic trioxide on the growth of leu-
kemic progenitors (CFU-L) were assessed by clonogenic assays in 
methylcellulose, as in previous studies.46-48
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Figure 4. Generation of antileukemic responses by pharmacological 
inhibition of RsK. (A) peripheral blood mononuclear cells from patients 
with aML were plated in a methylcellulose culture assay system with 
the indicated concentrations of BI-D1870 and in the presence or 
absence of as2O3 (0.5 μM), as indicated. Data are expressed as percent 
control of leukemic CFU-blast (CFU-L) colony formation for control un-
treated cells. Means ± se of the values from 6 experiments using differ-
ent patient samples are shown. ( p < 0.05, using a paired 2-tailed t-test). 
(B) Normal human, CD34+ hematopoietic progenitor cells were plated 
in a methylcellulose culture assay system with the indicated concentra-
tions of BI-D1870 and in the presence or absence of as2O3 (0.5 μM), as 
indicated. Data are expressed as percent control of normal myeloid 
(CFU-GM) (shaded bars) or erythroid (BFU-e) (open bars) hematopoietic 
progenitor colony formation for control untreated cells. Means ± se of 
the values from 3 experiments are shown.
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