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Abstract

Background: To improve the quality, quantity, and speed of implementation, careful monitoring of the
implementation process is required. However, some health organizations have such limited capacity to collect,
organize, and synthesize information relevant to its decision to implement an evidence-based program, the
preparation steps necessary for successful program adoption, the fidelity of program delivery, and the sustainment of
this program over time. When a large health system implements an evidence-based program across multiple sites, a
trained intermediary or broker may provide such monitoring and feedback, but this task is labor intensive and not
easily scaled up for large numbers of sites.
We present a novel approach to producing an automated system of monitoring implementation stage entrances and
exits based on a computational analysis of communication log notes generated by implementation brokers.
Potentially discriminating keywords are identified using the definitions of the stages and experts’ coding of a portion
of the log notes. A machine learning algorithm produces a decision rule to classify remaining, unclassified log notes.

Results: We applied this procedure to log notes in the implementation trial of multidimensional treatment foster
care in the California 40-county implementation trial (CAL-40) project, using the stages of implementation completion
(SIC) measure. We found that a semi-supervised non-negative matrix factorization method accurately identified most
stage transitions. Another computational model was built for determining the start and the end of each stage.

Conclusions: This automated system demonstrated feasibility in this proof of concept challenge. We provide
suggestions on how such a system can be used to improve the speed, quality, quantity, and sustainment of
implementation. The innovative methods presented here are not intended to replace the expertise and judgement of
an expert rater already in place. Rather, these can be used when human monitoring and feedback is too expensive to
use or maintain. These methods rely on digitized text that already exists or can be collected with minimal to no
intrusiveness and can signal when additional attention or remediation is required during implementation. Thus,
resources can beallocated according toneed rather than universally applied, or worse, not applied at all due to their cost.
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Background
A critical challenge to implementation science is the
development of methods to support the scale up of
evidence-based programs that are both effective and
feasible for use in research-limited community service
agencies. Since implementation agencies at the federal,
state, or community level typically operate with limited
resources, allocating them wisely to achieve a saturated,
effective level of implementation (e.g., maximizing the
number of adopters and ensuring that each adopter exe-
cutes the intervention program at a high level of fidelity)
is a key issue. A community service agency, local health
organization, or technical assistance center may need to
take an additional step to move a stagnating but promis-
ing implementation forward or may have to withdraw
resources from an effort that shows no sign of pro-
gressing or achieving impact. Currently, agencies make
strategic resource allocation decisions based upon their
personal experiences or on limited prior evidence, which
is typically derived from investigations conducted under
conditions that may not be comparable to real-world cir-
cumstances (e.g., implementation trials taking place in
a different health system). Ideally, one would want to
respond to experiences in the field based on valid and
reliable measures to assess the quality, quantity, speed,
and sustainment of implementation of an evidence-based
intervention through the various stages in the process
[3, 7, 29]. However, the accurate and reliable measure-
ment of implementation stages and milestone attainment
is generally resource intensive [16, 35] and therefore not
often available for monitoring and feedback. A method-
ological question germane to implementation science is
whether the process of implementing a given interven-
tion can be mathematically characterized using low cost
or unobtrusive measurement methods [41], what we call
of social system informatics (Gallo, CG, Berkel, C, Mauri-
cio, A, Sandler, I, Smith, JD, Villamar, JA, Brown, CH,
Implementation Methodology from a Systems-Level Per-
spective: An Illustration of Redesigning the New Begin-
nings Program, in preparation) and whether these results
can be used to assist implementation decision making
processes, potentially reducing human bias and error
while reducing the costs associated with scale up and
sustainment. This automated alternative to a coding by
an expert of the implementation process could use read-
ily available text information, such as an organization’s
meeting notes, grantee reports to funding agencies, or
email implementation agents, and transcripts of interven-
tion agents, and the target population as programs are
delivered. Such text is one type information that we have
found useful in identifying key activities and milestones
indicative of implementation stage; however, the auto-
mated classification of such information has only recently
been tested in limited circumstances [16]. In this paper,

we present a proof of concept for automating the deter-
mination of the stage of implementation using a machine
learning algorithm with brief text collected by an imple-
mentation broker or intermediary as an evidence-based
program is implemented across 40 counties. This auto-
mated approach to determining when different stages are
entered or exited could pave the way for improved imple-
mentation decision-making as programs are scaled up.
Implementation is a process that runs in stages. The

number of stages, what each stage represents, and their
elements are largely defined by the developer of a specific
intervention or specified by the implementation frame-
work that guides the research. Stages are useful for under-
standing and organizing the tasks and activities that occur
earlier versus later in the implementation process, [29]
and the level and type of involvement required of each ser-
vice agency [39]. For example, Aarons and colleagues [1]
describe a four-stage framework for the implementation
of interventions in the public service sector. These stages
are as follows: exploration, adoption decision/preparation,
active implementation, and sustainment (referred to as
the EPIS framework). With almost any implementation
effort, there exists the possibility of multiple stages over-
lapping or occurring concurrently. This can be very ben-
eficial; for example, monitoring progress on preliminary
steps towards sustainment may be useful in predicting
whether a health delivery system eventually attains this
stage. Many intervention developers have described the
implementation process and the scale up of their spe-
cific intervention in considerable detail using their own
systems, for implementing selected parenting programs
that focus on prevention [10, 15, 16, 18–21, 25, 34, 36].
In this particular study, we use the stages of implemen-
tation completion (SIC) [7], which involves eight stages,
in a randomized implementation trial involving 40 coun-
ties in California wheremultidimensional treatment foster
care is implemented [3, 8–10, 23, 30, 32, 40]. We selected
this CAL-40 project for proof of concept because of the
high quality and strength of the SIC data and use this for
development and illustration of the method.
Creating an automatic classifier tools work only requires

three things. First, each “message” or a sequence of
words pertaining to the implementation process should
be assignable by an expert to one or more stages. Some
of these assignments need to be classified with certainty,
but other messages can and are classified as uncertain by
an expert. Further, only a portion of the existing messages
need to be coded by an expert into stages. Second, a series
of text messages—in our case communication log notes of
an intermediary [13]—need to be made available in digital
form along with dates of occurrence. Third, an algorithm
for text mining the non-classified text needs to be created.
In our approach, we use a semi-supervised learning algo-
rithm (described below) to classify what stage one is in
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based on an ongoing set of communication log notes taken
by an intervention broker. The classifier is built on the
expert’s classification of messages and applied to unclas-
sified messages to provide probabilities of stage member-
ship. These can then be used to identify when entries,
exits, and potential re-entries into these stages occur.
This paper is organized as follows. In the next section,

we provide a brief context of our motivating implementa-
tion study, what data are available, a high-level overview
of the construction of an algorithm for classification,
and how it can be used in practice. We also describe
preparatory steps including what we term data scrubbing
to remove person and place identifiers. This is followed
by a more detailed section on keyword labeling, feature
extraction, and a description of the novel semi-supervised
non-negative matrix factorization algorithm. This section
is for readers requiring computational details, but other
readers can glean the general approach from the previ-
ous section and can skip the details. Next, we illustrate the
use of these procedures on text obtained from the CAL-40
project, showing the behavior of this automated classifier
based on short sequences of text and how well it can infer
the stage and date entrances and exits longitudinally. We
end with a conclusion section.

Methods
Cal-40 study
For this proof of concept, we utilized the communication
log notes from a large-scale randomized implementation
trial of multidimensional treatment foster care (MTFC)
to examine the efficacy of the proposed text mining
approach. A total of 51 counties, 40 from California and
11 from Ohio, were recruited and randomized to the
individualized (IND) or community development teams
(CDT) implementation model. California counties, whose
data are the focus of this paper, were recruited starting
May 2006, with follow-up data collected through April
2012. The CDT counties were connected in a learning
collaborative model to facilitate knowledge transfer, while
counties assigned to IND implemented MTFC under
usual conditions (e.g., without social learning and network
development across counties). Randomization, allocation
concealment, and procedures to minimize contamination
across conditions are detailed elsewhere [7, 8].

Stages of implementation completion
The stages of implementation completion (SIC) measure
[7, 29] was developed to provide qualitative and quanti-
tative assessment of the time to achievement of a series
of implementation stages. The initial development of the
SIC occurred in the context of the CAL-40 random-
ized implementation trial [7] and has been generalized to
many other settings [29]. In brief, the SIC is an observa-
tional measure of eight stages used to assess the adoption

and delivery of the intervention protocol and the pro-
portion and quality of activity completion within a series
of defined implementation stages. The SIC can produce
time-based milestone metrics, such as the highest stage
achieved and time to stage achievement, along with rele-
vant intervention specific outcomes (e.g., the number of
families served). This measure was equally appropriate for
counties in the IND and CDT conditions. Research staff
collected dates relevant to the events and milestones out-
lined in the SIC in an ongoing manner throughout the
study, thus providing a complete tracking of which stages
a county was in at each time [7, 29, 31].

Communication logs collected by implementation brokers
During the trial, MTFC implementation brokers inter-
acted by phone, email, and in person with the county
service organizations to implement this new system of
foster care assignments for at-risk children. All interac-
tions were recorded and dated by the intervention brokers
through digitized communication log notes they main-
tained throughout the trial. These notes identified the
county and what was the intent or what happened at each
contact. Each occurrence generated a single or a few sen-
tences and often included phrases rather than complete
sentences. No instructions were provided to the imple-
mentation brokers on how detailed these notes should be,
nor was there an expectation that these notes would be
used later for this automatic classifier.

Communication log processing and scrubbing
Our text mining would have no generality if it included
names of individual people or places in the communi-
cation log notes. Thus, our first step was to replace all
names of persons and places in the text with placeholders.
A second reason for replacing these names with place-
holders was to deidentify these records, a requirement of
the Oregon Social Learning Center IRB to which the par-
ent research project reported. We used pattern matching
computational methods to locate identifiers from the log
data. To scrub names from the communication log, we
first developed a program that sorted all individual words
in the text and matched them against a list of first and last
names of team members and employees in each county
who were engaged in this project. Matching names were
replaced with a unique identifier token (e.g., “person541”)
at each location it appeared in the text. Telephone num-
bers and email addresses were recognized and replaced in
a similar fashion. We resolved a few uncertainties using
upper and lower case, e.g., the word “bill” could be a per-
son or an invoice, but “Bill” in middle of a sentence was
treated as a person. This scrubbing allowed for fast, cheap,
and accurate data that maintained the richness of the
interactions and protected the identities of the interven-
tion brokers and the county service organizations. Similar
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technology has been used before to facilitate the sharing of
sensitive data between academic institutions [27, 38, 42].

Processing of individual log notes to formation of
longitudinal state trajectories
Figure 1 gives a broad overview of the steps used to
identify keywords and phrases to build the automated
classifier, provide probabilistic labeling of log notes, and
produce summaries of each site’s stage transitions across
time. Using text mining, we identify potentially important
single keywords or unigrams, as well as two-word phrases,
or bigrams, and potentially more complex features whose
presence in an entry in a communication log is associ-
ated with an implementation stage. From here on out, we
refer to an entry in a communication log by the term “log
note” or with a more general term “message.” A compu-
tational procedure is used to determine an optimal set of
these keywords, a step known as feature selection. Then,
each log note is searched for these selected features and
labeled into stages according to its probability assessment.
The final step is to construct summary representations
of these using Markov or other more complex modeling
approaches.

Identification of keywords from the text and formation of
the classification rule
The key methodological challenge is to identify which
words and phrases should be identified from a log note.
This can be accomplished through steps illustrated in
Fig. 2. Our text mining involves two sets of information.
First, from the description of each stage, keywords per-
taining uniquely to that stage are identified. Second, other
potential unigrams or bigrams are identified based on log
notes that are previously classified by experts as well as
their frequency of their appearance. In the second row of

this figure, we count the occurrence of each of these key-
words in each log note. A machine learning algorithm—a
novel version of a semi-supervised non-negative matrix
factorization (semi-NMF), which has shown superior per-
formance to other alternatives—is used to determine
probably stages for each log note.
The stage prediction problem considered in this paper

has two important characteristics. First, the same log note
may appear in multiple stages. Thus, instead of classify-
ing each log note into a unique stage, we try to assign
with a probability value the log note to each stage, where
the probability values of the log note across the stages
sum to 1. Second, log notes are classified independently
across time and site. This temporal feature makes the
stage assignment problem a natural fit for incremental
classification; here, a new log note is processed for the
probabilistic class assignment without referring to the
probability values calculated for the previous log notes
from the site.

Details onmachine learning
Two sets of data are available as input for the training set.
The first data set, Dstage, consists of the stage descriptions
in text obtained from the published SIC measure, orga-
nized as follows: let 1, . . . , S be the stages of the process.
Then, Dstage is {Ai | i, 1 ≤ i ≤ S}, where for each Ai,
i, 1 ≤ i ≤ S, is a set of phrases/sentences that describe
activities and events to occur in the stage i, e.g., “first
study-initiated contact for pre-implementation” and “first
county response to first contact for pre-implementation
planning”. The second data set, Dlog, is the collection of
log notes with known classification into stages based on a
human expert. This matrix is organized as follows: let L be
the number of distinct adoption efforts (i.e., the number of
distinct counties in which the brokers made an attempt for

Fig. 1 Overview of developing the classification system for summarizing implementation stage transitions
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Fig. 2 Schematic of the classification rule

adoption). Then, Dlog = {Bi | 1 ≤ i ≤ L}, where for each i,
1 ≤ i ≤ L, Bi comprises the time-stamped log notes from
the ith adoption effort. For each i, 1 ≤ i ≤ L, Bi is a series
of pairs {(tij,mij)}Ti

j=1, where Ti is the total number of log
entries classified in stage i and for each j, 1 ≤ j ≤ Ti, tij is
the date and time the activity/event took place and mij its
text, where ti1 < · · · < tiTi .
The two data sets are processed in order, first Dstage

and then Dlog. The stage data set Dstage is processed for
keyword selection. This is a process for selecting a set of
“words” that are likely to occur in stage descriptions of
only one stage. Since a word can take different forms (e.g.,
a verb and its third person singular form or its gerund),
the descriptions are first processed for “stemming”—
stripping each “word” to its stem (e.g., “tak-” is the stem
for “take,” “taking,” “took,” and so on). For this purpose,
the Porter stemmer [28] method is used. After stemming,
the stems with the aforementioned discriminating power
are selected using feature selection techniques [24] (see
Section Keyword labeling via feature selection for details).
Based on the descriptions and the keywords, one may be
tempted to generate a keyword-to-stage mapping matrix,
whose ij entry represents the importance of the ith key-
word in the log notes for the stage j. However, noting
that those who generate the descriptions are unlikely to
be those who generate the log notes, the use of such
a matrix may result in inaccurate prediction of stages.
Rather, the proposed method calculates this importance
through training.
The training set of log notes, Dlog, is processed with

keywords extracted as auxiliary input after scrubbing as
described above. Let K be the number of keywords thus
extracted and let W = {w1, . . . ,wK } be the keywords.
Each log note in Dlog is processed for stemming as in
the same manner as in Dstage and then the occurrence of
each keyword is counted. This produces a keyword-count
vector of dimension K. After normalizing the entries by
dividing the total count, each count vector is reduced to
a real vector of dimension K in which the entries are

non-negative and the total of the entries sum to 1. By
assembling these K-dimensional normalized keyword fre-
quency vectors as rows, an L × K non-negative matrix
X = (xij) is obtained, in which xij is the entry corre-
sponding to the jth keyword in the ith log note. Next, the
keywords W and the occurrence matrix X are processed
with non-negative matrix factorization for the purpose
of factorizing each row of X as a linear combination of
the rows of a stage-keyword matrix with non-negative
coefficients. In an ideal situation, the descriptions are suf-
ficient to characterize distinctions among the stages and
so the keywords chosen are sufficient for computation-
ally distinguishing among the stages of the log notes with
no additional human input. Unfortunately, this is not the
case, and so an assumption is made that a small fraction
of the log notes are already labeled with their correspond-
ing stage IDs by a domain expert and the decomposition
of the log note vectors is carried out using this additional
piece of information as a guide in a “semi-supervised”
manner, which will be described in detail in the next
section.

Keyword labeling via feature selection
Once the description-term representation has been
obtained, keyword selection is made using the max-
relevance and min-redundancy framework as presented
in [24]. Here, the keywords are selected in sequence, one
after the other, until the number of selected keywords has
reached a target number. At each step, a new keyword is
chosen so as to (a) minimize the resemblance of the new
keyword to the keywords chosen in the previous steps and
(b) maximize the representation of the documents in the
collection when any other other than the previously cho-
sen keyword and the new keyword are removed. The idea
can be formulated as an optimization problem as follows:
Suppose that the task is to select a set of keywords in

sequence for stage i. Let Ai be the stage descriptions for
stage i and let Pi be the set of all unique words appear-
ing in Ai (after stemming). Let k ≥ 1 and suppose that
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we have already selected k − 1 keywords. Let Wk−1 be
the set of these k − 1 keywords. The kth keyword shall be
selected from the remaining candidates for keywords; i.e.,
Pi − Wk−1. The selection is made using the following for-
mula from [24] that attempts to minimize the redundancy
and to maximize concordance:

max
wq∈Pi−Wk−1

⎛
⎝sim(wq;Pi) − 1

k − 1
∑

wp∈Wk−1

sim(wq;wp)

⎞
⎠ .

(1)

Here sim is the similarity that utilizes the cosine similar-
ity function. The function sim utilizes the cosine similarity
function. The cosine similarity of for two r-dimensional
vectors (x1, . . . , xr) and (y1, . . . , yr) by

x1y1 + · · · + xryr√
x21 + · · · + x2r

√
y21 + · · · + y2r

.

For similarity, the first entry sim(wq;Pi) compares the
vector consisting of the number of occurrences of wq in
the documents of Ai and the vector consisting of the total
number of words in the documents of Ai (if Ai has m
documents, both are m-dimensional). The second entry
compares such vectors for wp and for wq.
The computational complexity of this incremental

selection is O(k‖Pi‖).

Semi-supervised non-negative matrix factorization
In the semi-supervised learning model employed, it is
assumed that a fraction of the log notes and a fraction of
the keywords are labeled, each with its correct stage num-
ber. The label of a log note comes from a domain expert
who is able to assert that it belongs to a unique stage.
The label of a keyword comes from the feature extraction
process; that is, each keyword that uniquely appears in a
single stage is designated as the labeled keywords, with the
number of the stage in which they uniquely appear being
the stage label. While the proportion of stage-labeled log
notes is a feature determined by our design, the propor-
tion of the other is a parameter that can be determined
based on the choice of the keywords. That is, if there are
no such uniquely occurring keywords, the proportion is
necessarily 0. Of course, not all the keywords with unique
association with a single stage should be used for this
purpose, since those who provide the descriptions can be
different from those who leave the log notes. Thus, the
uniquely occurring keywords may be used for multiple
stages by the log note takers.
The non-negative matrix factorization here computes

two non-negative matrices: F of dimension L× S and G of
dimension K × S. Each row of F sums to 1 and for each
j, 1 ≤ j ≤ S, the jth entry of the row represents the cal-
culated probability that the log note corresponding to the

row belongs to stage j. Each row of G sums to 1 and for
each j, 1 ≤ j ≤ S, the jth entry of the row represents
the probability that the keyword corresponding to the row
belongs to stage j.
Let F0 be the L × S matrix that represents the partially

assigned labels of the log notes. That is, for each i, 1 ≤
i ≤ L, if the ith log note is not part of the labeled data, the
ith row of F0 is all 0, and if the ith log note is part of the
labeled data and is labeled as stage j, 1 ≤ j ≤ S, the ith row
of F0 is a vector in which the jth entry is 1 and all the other
entries are 0. Let G0 be the K × Smatrix similarly defined
for the keywords. That is, for each i, 1 ≤ i ≤ K , if the ith
keyword is not part of the labeled data, the ith row of G0
is all 0, and if the ith keyword is uniquely associated with
stage j, 1 ≤ j ≤ S, the row is all 0 except for the jth entry
which is 1. Let C0 be the L × L diagonal matrix in which
the ith diagonal entry is 1 if the ith log note is part of the
labeled data and 0 otherwise. Similarly, letC1 be the K×K
diagonal matrix in which the ith diagonal entry is 1 if the
ith keyword is part of the labeled data and 0 otherwise.
The semi-supervised non-negative matrix factorization

to be done can be formulated as the following optimiza-
tion problem:

min
F ,H ,G

{
‖X − FHGT‖2

+α · trace
(
(F − F0)TC0(F − F0)

)

+ β · trace
(
(G − G0)

TC1(G − G0)
)}

, (2)

where F is L × S, G is K×, and H is S × S are nonnegative
real matrices.
Also, α > 0 and β > 0 are parameters, which are

used to define the extent to which F ≈ F0 and G ≈ G0
are enforced, and H is an S × S matrix that represents
correlations among the stages. In general, involving these
parameters make the model more generic and it allows
certain flexibility. For example, in some cases, if the man-
ually labels are not very accurate or ambiguous, we can set
a smaller α or β so that the final results are not depen-
dent on F0 or G0 too much. In our experiments, since the
human labeler is very confident with the labels, we set
α and β to be 1. The solution of the above optimization
problem, the computational algorithm, and the proof the
convergence of the proposed algorithm are listed in the
Appendix.

Results
Here, we present a brief description of the input data and
findings of this method as applied to the CAL-40 study.

Data description and preprocessing
Summary descriptions of CAL-40 data. The data set
consists of 4589 log notes from 40 California counties.



Wang et al. Implementation Science  (2016) 11:119 Page 7 of 14

Each log note is labeled by a project coordinator with a
stage number, ranging from 1 to 8 as follows:

• Stage 1—Agreement to consider implementation
• Stage 2—Pre-implementation
• Stage 3—Recruitment plan and review
• Stage 4—Training schedule
• Stage 5—Developer/administrator call
• Stage 6—Clinical meeting
• Stage 7—Implementation review
• Stage 8—MTFC symposium and certification

application

Of the 40 counties, 31 did not go beyond stage 3.
The remaining 9 counties proceeded beyond stage 3. In
addition to the 4589 log notes, we also used 76 stage
description sentences which were incorporated into the
log notes and used as the labeled data. Table 1 shows
the detailed data distribution for labeled and unlabeled
data. In the stage prediction experiments, we use four
categories representing stages 1, 2, 3, and 4 or above.
As described in Section Keyword labeling via feature

selection, a pre-designated number of keywords were
selected to be used as labeled words. The number of
keywords was chosen experimentally: we used a differ-
ent number of keywords in the experiments and selected
the solution producing the best results. Some typical key-
words were “feasibility,” “pre-implementation,” “referral,”
“initiate,” “certification,” etc.

Prediction accuracy
We use accuracy as the evaluation metric to compare
the prediction performance of our non-negative matrix
factorization-based classifier with other supervised learn-
ers such as SVM and Naïve Bayes classifier. Accuracy was
defined based on the proportion of correct classifications
of the log notes.

Accuracy = Number_of_correct_predictions
Total_number_of_log_notes

Number of keywords
First, we compared the prediction accuracies using differ-
ent numbers of keywords. From Fig. 3, we can see that 20
keywords produced the best prediction accuracy. Clearly,
if the number of keywords is too small, there is not enough
information carried by the keywords and so the accura-
cies are low. Interestingly, it is not the case that the more
keywords, the better results. The reason that the accuracy

Table 1 Data distribution

Stage 1 Stage 2 Stage 3 Stage 4 or later

Unlabeled 781 2937 183 688

Labeled 8 9 12 47

peaks at 20 and then declines beyond 20 is perhaps that
low-ranked keywords have the effect of confusing the
classifiers.

Comparison of classification accuracy
For comparison, two alternative machine learning meth-
ods are compared to the method we described in the
previous section.

• Naïve Bayes: a Naïve Bayes classifier is a scalable and
effective supervised learner.

• Support vector machines (SVM): SVM is one of the
most widely used supervised learning model, and it is
robust and effective to solve data classification
problems [11]. In experiments, we use linear kernel
which has been shown effective in text mining tasks.

• Semi-NMF: this does not reply on prior keyword
knowledge. This uses partial log note labels in the
aforementioned algorithm.

Figure 4 compares the accuracy of these three meth-
ods. We observe that the semi-NMF with prior key-
word knowledge model can produce 82.5% in accuracy.
It clearly outperforms SVM and Naïve Bayes classifiers
because semi-NMF is a semi-supervised learner. The
advantage of the method may also be in that it makes use
of both labeled and unlabeled data for training a better
model to predict the unknown labels.

Finding start and end dates of each stage
Since semi-NMF makes probabilistic assignments of log
notes to stages, we can infer the start and end dates of a
stage by detecting the change in the probabilities. Figure 5
shows the changes in the probability value of log notes
being in stage 2 in the County 17 data. From the figure,
we see that the probability suddenly increases on 6 Febru-
ary 2008 and suddently decreases on 13 June 2008. It may
be inferred from that County 17 may have be in stage 2
between 6 February 2008 and 13 June 13 2008. Comparing
this to the human-labeled ground-truth (which is shown
below the time axis in the figure), we find that 55 out of 65
log notes are correctly classified. Figure 6 shows the entire
picture of the county 17 prediction.
As mentioned earlier, only nine counties arrived at stage

4 in the original implementation trial. By checking the pre-
dicted stage label, we found that 7 of the 31 counties that
had yet to reach stage 4 contained a log for which our clas-
sifier asserted at least one log note was classified in stage
4. This results in an error rate of 7/31 = 22.6% for stage 4
classification.

Transitions between states over time
To represent how changes occur over time in a single
county, one can imagine generating Markov chain models
for state transitions relying upon stage classifiers.
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Fig. 3 Accuracy of the semi-NMF-based classifier with respect to different numbers of keywords

Fig. 4 Prediction accuracy comparison with different methods
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Fig. 5 Example start and end date discovery on county 17 stage 2 data

Table 2 shows the confusion matrix generated using 120
samples covering stages 1–4. Overall accuracy is 83.3%.
While the accuracy in stages 3 and 4 appear lower than the
other two, the performance on the first two appear high.
Ideally, these models produce estimates of remaining in

a state or transitioning to another. Figure 7 shows widely
different patterns of transition for two counties. County 1
is more likely than County 23 to remain in stage 1, based
on its higher probability of 0.67 of remaining in stage 1
compared to that of County 23.

Discussion
For this proof of concept, we developed a computational
approach for monitoring transitions of a health delivery
system through identified stages of implementation. It
relies on text information that can be collected readily and

used to provide feedback at appropriate levels from front
line clinicians and facilitators to agency managers and
to funding agencies. A novel semi-supervised machine
learning algorithm was developed that used as input two
types of information; the first involved text descriptions
of each stage and the second consisted of log notes from
an intermediary in which some were coded by a human
expert. We provided brief illustrations of how such infor-
mation could be used to provide summaries of implemen-
tation progress involving single sites or comparisons of
sites. Quantitatively, the accuracy of these automated clas-
sifications has reached acceptable levels for a range of uses
that we explored in the results section.
We recognize that some uses would likely require more

accurate classifications. In particular, our over-projection
of counties to have reached stage 4 suggests that in real

Fig. 6 Transitions of county 17 through stages 1 to 3
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Table 2 Confusion matrix

Classification results
True labels

1 2 3 4

1 29 1 4 2

2 1 63 5 0

3 1 2 5 1

4 0 0 3 3

applications, there would need to be a tuning of the
algorithm that takes into account to relative costs of
omitted and committed classification errors. There are
many possibilities for improving accuracy that we have
not investigated yet. For example, our classifications of
each log note are all done independently; combining the
classifications across a proximal series of such notes can
provide improved decision making, as we have demon-
strated in another automated implementation project
(Li, Y, Gallo, CG, Mehrotra, S, Liu, L, Brown, CH, Rec-
ognizing emotion in speech for behavioral intervention
studies, submitted). Furthermore, we have developed a
general concept for using a long series of unobtrusive or
lower quality measures involving complex human inter-
actions and behaviors in place of highly accurate but
costly measures observed by humans. These methodolog-
ical approaches fall under the name of social systems
informatics and can readily outperform human coding
when large amounts of automatically coded data are
available (Gallo, CG, Berkel, C, Mauricio, A, Sandler, I,
Smith, JD, Villamar, JA, Brown, CH, Implementation
Methodology from a Systems-Level Perspective: An Illus-
tration of Redesigning the New Beginnings Program, in
preparation).
We note several potential uses of this method. One

challenge implementation scientists face is the successful
scale up of effective interventions. The comparatively high

costs of human monitoring of implementation necessar-
ily increase proportional to the number of sites involved
when scaling up. But the costs of using a computational
algorithm for automatic classification are virtually the
same regardless of the number of sites, and the availability
of additional log notes pertaining these sites should lead
to improved classifications at a local level and more gen-
eralizable knowledge as well. Monitoring of supervision
and program fidelity could be aided by the methodology
described here. In particular, a facilitator’s utterances can
be transcribed computationally to text using existing tech-
nology and used as input to an automated classification
system [14]. Computational models characterizing the
implementation process can be used as a guide for newly
hired intervention delivery agents and serve to “alert”
them to potential problems (i.e., drift) as defined by the
intervention developer. A third challenging problem for
implementation is to monitor and assist sites in sustaining
the delivery of effective evidence-based programs espe-
cially after federal or local funding ends. Indeed, many
community-based organizations that are funded by local,
tribal, state, or federal agencies are provided little fund-
ing for infrastructure and therefore have limited capacity
to detect or anticipate problems with the implementa-
tion process or plan for long-term sustainment. Building
a monitoring system that uses as input text from required
reports of these organizations can be an ideal way to
monitor steps they are taking (or not taking) towards sus-
tainment throughout the grant period. Finally, such tools
could be used as a first stage measure in randomized
implementation trials [4, 6, 8, 22, 26, 37], backed up by
a stratified sampling approach that adds more accurate
human coding for large implementation evaluations.
This automated system is an example of a broader set

of computational technologies that we believe could pro-
vide important supports for successful implementation.

Fig. 7 Transitions between stages for two counties using Markov modeling
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Brown and colleagues [5] describe a general model that
identifies eight areas where computational and systems
science methods can aid the scale up, dissemination, and
sustainability of an effective program. These eight areas
represent important points of entry where a technology,
such as the proof of concept presented here. The compu-
tational methods described by Gallo and colleagues [17]
and Atkins and colleagues [2] can support the implemen-
tation efforts of a service delivery agency. We note that
Gallo and colleagues used computational linguistics and
natural language programming to detect the component
of “joining” from digitally recorded sessions of the Famil-
ias Unidas program. The automatic detection of this key
dimension of fidelity means that it is possible to shorten
the time between when a session happens and the feed-
back available for that session. Atkins and colleagues used
computational linguistic methods to evaluate fidelity to
motivational interviewing for a similar purpose.
Such a system could be scaled up with minimal effort

and cost in several ways. First, that mimics the stage iden-
tification in an implementation process typically rated
observationally by a trained expert using the SIC. We
make a bold assumption that to a large degree, the stage
of implementation is represented in the words exchanged
between the intervention developer and the intervention
adopters and that pertinent information in these written
exchanges can be recognized by an algorithm. The present
study tests this assumption. The results of this proof of
concept study support our assertion that the adoption
and implementation process of an effective program can
be supported through the use of computational science
methods. We used a computational method where the
communication log notes from a randomized implemen-
tation trial of MTFC were used to successfully distinguish
between implementation in the first three stages and
beyond stage 4 of the SIC measure.
The work presented in this study is not intended to

replace existing human monitoring of an implementation
process. For those systems where expert implementa-
tion specialists are monitoring key processes, and those
where the SIC measurement system can be maintained,
it is likely that they will continue being used effectively.
There may be opportunities for blended systems where a
first level automated system can focus human attention
where needed. We envision computational methods exist-
ing synergistically alongside human ratings to increase
efficiency and reduce costs by analyzing large amounts of
easy to collect data in an ongoing manner. There is also
a great benefit in using quality measurements such as the
SIC to specify the distinct stages relevant to an implemen-
tation strategy.We foresee greater use of suchmeasures as
the SIC now that a Universal SIC is being developed [33].
Addressing this challenge is of particular importance

for consumers of effective programs, like federal and state

service delivery agencies, as well as developers and pro-
moters of effective interventions. Service delivery agen-
cies commit resources in the adoption of an effective
intervention expecting improved health outcomes for the
people in the communities they serve. This is especially
true given the proven success of programs based on pre-
viously completed efficacy and effectiveness studies.
There are multiple potential applications of this method

in HIV prevention that can be used by public health agen-
cies and community-based health centers. For instance,
public health departments who fund implementation of
evidence-based prevention interventions across multiple
sites often require routine progress reports to monitor
implementation and achievement of health outcomes.
This method could facilitate the monitoring of imple-
mentation and decrease the time to review reports, thus
allowing for closer to real-time feedback on program
improvements.
Many community-based health centers clinics through-

out the country are in the early stages of implementation
of pre-exposure prophylaxis (PrEP), a medication with
demonstrated impact on preventing HIV infection. Auto-
mated monitoring of the progress of implementing PrEP
within these community-based organizations as they are
monitored by local public health departments could pro-
vide one important application of the method provided
here. Also, these methods could be applied to individ-
ual case notes. For example, computational methods that
perform linguistic mining of notes in electronic medical
records can also facilitate the monitoring of an individ-
ual client’s progression along the PrEP continuum of care,
routine clinical follow-up and monitoring, and adher-
ence to PrEP medication. This method could also provide
real-time feedback to program implementers of potential
threats to adherence that could be prevented with timely
information.
Our proof of concept had several limitations. Since

our work only involving a single implementation study
of MTFC measured by the SIC, we cannot be certain
that this procedure will work with other measurement
systems. With Saldana and colleagues’ development of a
Universal SIC [33], the methods developed here will need
to be fine-tuned for application across programs beyond
this particular evidence-based program. Secondly, what
successes this algorithm has had dependeds on the dis-
tinctness of the stages, sufficient consistency in the way
that the log notes are produced, and the quality and quan-
tity of human coding of a portion of the log notes. Little
information is available to guide others in deciding the
magnitude of these important factors.

Conclusions
The detection of the quality, speed, and milestone attain-
ment of the implementation process of effective programs
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is of paramount concern for implementation scientists,
policy makers, and practitioners [1, 3]. Federal and state
agencies that invest in programs of research to develop
effective programs, healthcare delivery systems charged
with delivering the best available care, and the con-
sumers and beneficiaries of such programs are also highly
invested in supporting the adoption and implementation
of effective programs. These agencies often do not have
the capacity to detect or anticipate problems with the
implementation process.

Appendix
Computational algorithm
To solve the optimization problem in Eq. 2 the following
update rules adapted from [12] can be used.

• Construct an L × S matrix F ′ by setting for each i,
1 ≤ i ≤ L, and for each j, 1 ≤ j ≤ S,

F ′
ij ← Fij

(XGHT + αC0F0)ij
(FFTXGHT + αC0F)ij

, (3)

and then set F to F ′.
• Construct an S × S matrix H ′ by setting for each i,

1 ≤ i ≤ S, and for each j, 1 ≤ j ≤ S,

H ′
ij ← Hij

(FTXG)ij

(FTFHGTG)ij
, (4)

and then set H to H ′.
• Construct a K × S matrix G′ by setting for each i,

1 ≤ i ≤ K , and for each j, 1 ≤ j ≤ S,

G′
ij ← Gij

(XTFH + βC1G0)ij

(GGTXTFH + βC1G)ij
. (5)

and then set G to G′.

The algorithm consists of an iterative procedure using
the above update rules until convergence. The detail pro-
cedure is shown in Algorithm 1.

Algorithm 1 Iterative algorithm
Input: X : nonnegative message-term matrix

K : the number of stages
Output: F : message stage indicator matrix

G : term stage indicator matrix

1: Initialize F = F0; G = G0; H =
(FTF)−1FTXG(GTG)−1.

2: repeat
3: Update F using Eq. (3);
4: Update G using Eq. (5);
5: Update H using Eq. (4);
6: until converges.

Algorithm correctness and convergence
Updating F, G, and H using the rules above leads to an
asymptotic convergence to a local minima. This can be
proved using arguments similar to (Ding et al. 2006). We
outline the proof of correctness for updating F since the
squared loss term that involve F is a new component in
our models.

Theorem At convergence, the solution satisfies the
Karuch, Kuhn, Tucker optimality condition (KKT condi-
tion, for short), i.e., the algorithm converges correctly to a
local optimum.

Proof of the Theorem 1 Following the theory of con-
strained optimization (Nocedal and Wright, 1999), we
minimize the following function

L(F) = ‖X − FHGT‖2 + α · trace[ (F − F0)TC0(F − F0)]
+ β · trace[ (G − G0)

TC1(G − G0)]

Note that the gradient of L with respect to F is,
∂L
∂F

= −2XGHT + 2FHGTGHT + 2αC1(F − F0). (6)

and a similar relation holds for G.
The KKT complementarity condition for the nonnegativ-

ity of Fik gives

[−2XGHT+FHGTGHT+2αC0(F−F0)]ik Fik = 0. (7)

This is the fixed point relation that local minima for
F must satisfy. Given an initial guess of F, the successive
update of F using Eq. (3) will converge to a local minima.
At convergence, we have

Fik = Fik
(XGHT + αC0F0)ik

(FFTXGHT + αC1F)ik
.

which is equivalent to the KKT condition of Eq. (7). The
correctness of updating rules for G in Eq. (5) andH in Eq.(4)
have been proved in [12]. Note that we do not enforce exact
orthogonality in our updating rules since this often implies
less accurate class assignments.
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