

Breaking Data Silos

the Gen3 platform for creating data commons

Presented by Chris Meyer, PhD

Center for Translational Data Science, University of Chicago

Presentation Outline

• The Data Silo Problem

- What Are Data Silos?
- Why Do They Exist?

• How to Open Data Silos and Prevent Their Creation

- The Data Commons Paradigm: Making Data FAIR
- The Gen3 Platform and How It Breaks Data Silos

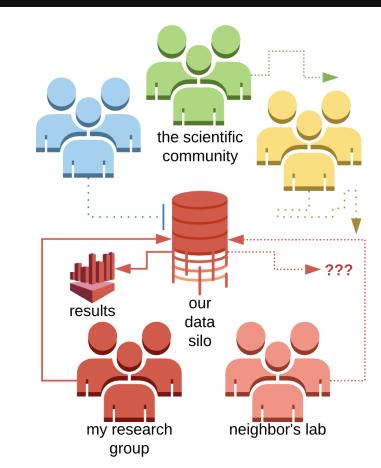
• Demonstration of the Gen3 Platform

- Exploration of Windmill, Gen3's Web-based Data Portal UI
- o Introduction to the Gen3 Workspace: Using the Gen3 SDK in a Jupyter Notebook

The Data Silo Problem

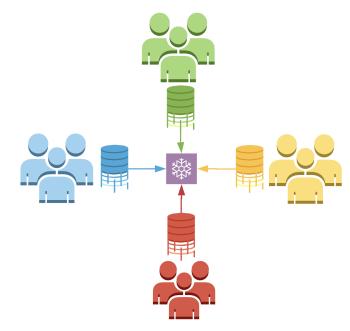
the barriers to sharing and re-analysis of data

What are Data Silos?


- A data silo is an isolated data management system that is incapable of interoperating with other similar systems.
- Data stored in silos are hidden or inaccessible to analysts outside of the contributing department or organization.

Common Causes of Data Silos

- Silo mentality: refusal to open data up to competitors, even to other departments within an institution, or lack of effort due to different goals.
- Lacking Data Model or Quality: data are not well-described in the system, which prevents new users from understanding how to use it properly.
- System architecture incompatibility: data are stored on a system that does not provide open APIs, requires a special login, or has other technical limitations and incompatibilities.



The Promise of Data Re-use

Why should the scientific community be concerned about the sharing and re-analysis of data?

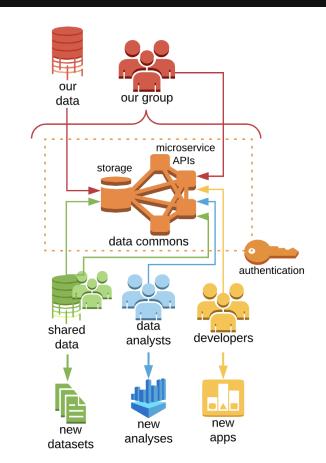
- The scientific method promotes the concept of study reproducibility.
- There are undiscovered insights in the data from a single study that re-analysis using new methods could reveal.
- Combining data from multiple, smaller studies in a cross-project or meta-analysis could reveal insights that would not be discoverable through analysis of individual studies (ML across TCGA is a great example).

Breaking Data Silos with Gen3

open-source software for creating data commons

What is a Data Commons?

Adata commons is cyberinfrastructure that co-locates data storage, data management, and computing infrastructure with commonly used tools for analyzing and sharing data to create an interoperable resource for the research community.

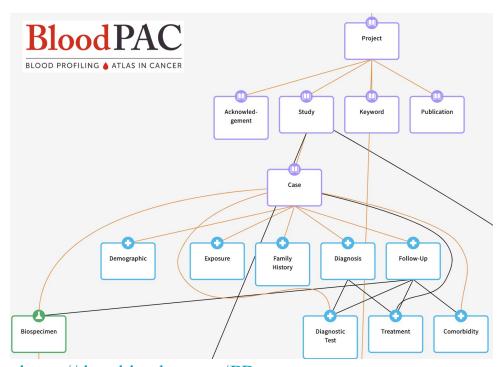


Comput Sci Eng. 2016; 18(5): 10-20. doi:10.1109/MCSE.2016.92.

The Case for Data Commons

- Data commons provide a secure platform for integrated data management and analysis to the entire scientific research community.
- The goal of a data commons is to deliver new datasets, new analytical methods and pipelines, and new apps for exploring and analyzing data through collaboration.
- New analyses can be performed and results can be hosted and shared all within the secure data commons environment to promote reproducibility and accelerate discoveries.

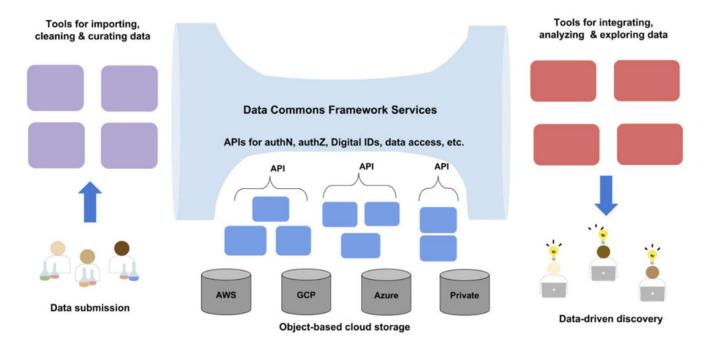
What is the "Gen3" platform?



- Gen3 is an open-source software stack for creating data commons.
- The software is comprised of a set of microservices that provide the basic functions for creating and operating a data commons:
 - User authentication and authorization to secure data access and analysis (Fence, auth service).
 - Metadata import and indexing using permanent digital IDs (UUIDs) (Sheepdog, metadata service).
 - Data file import and indexing using permanent digital IDs (GUIDs) (Indexd, file service).
 - Query of metadata and files using graphQL(Peregrine, query service).
 - Aweb-based user interface for data management, exploration, and analysis (Windmill, data portal service).
- Gen3 is the third generation of this technology, which runs microservices in containers and utilizes cloud automation (Kubernetes).
- Gen3 is cloud-agnostic, so files in a data commons are assigned a unique, permanent ID, but can be stored in and moved between any cloud location (Amazon S3, Google GCP, private FTP, intranet servers, etc.).

The Gen3 Data Model

- Gen3 uses a graph-like relational data model to describe the metadata associated with data files and any other information required to understand and replicate the scientific study, e.g.:
 - Sample storage / processing info
 - o Patient demographics / medical history
 - o Environmental / wearable sensor data
 - Omics data and associated metadata
 - o Processing pipelines and parameters
 - Associated authors / publications
- The data model evolves and typically follows a widely accepted vocabulary in the field (e.g., ICD codes, OMOP, NCIt).



https://data.bloodpac.org/DD https://aids.niaiddata.org/DD https://data.braincommons.org/DD

Architecture of Gen3: the "Narrow-middle"

Gen3 provides a lightweight, minimal set of core framework services for operating data commons, and it does so by exposing open APIs that apps can be developed over.

Cancer J. 2018; 24(3): 122–126. doi:10.1097/PPO.0000000000000318.

Hitting the Gen3 Open APIs

- An *API* (application programming interface) is a communication protocol between client and server for building client-side apps.
 - APIs have various "endpoints" (URLs) for performing their various functions.
 - Aclient sends a request to an API endpoint to retrieve specific types of information or to perform a specific function.
 - An example is the Facebook API, which allows 3rd parties to develop apps over their APIs that request information about user profiles, friends, and events.
 - o Gen3 provides APIs relevant to biomedical, environmental and translational data science.

• Examples of requests sent to Gen3 APIs include:

- List the data projects you have access to and download credentials for data access (auth service).
- Submit metadata to a project in the data commons (metadata service).
- Create a synthetic cohort by querying patient metadata across all projects (query service).
- Upload genome sequences from new tumor samples (file service) and link them to their patients' medical history metadata (metadata service).

Why use Gen3? It promotes FAIR data

- Gen3 was designed to make it easy for research communities to create FAIR data commons at minimal cost and technical barrier.
- The FAIR principles promote the idea that data should be:
 - Findable: Gen3's metadata and query services index data with unique and persistent identifiers and expose it to queries that run across data resources.
 - Accessible: Gen3's authentication and authorization service provides secure access to data and the portal service provides a web-based user interface for exploring data projects and launching analysis workspaces.
 - Interoperable: Gen3 was designed for interoperability, providing open APIs that communicate with clients using common protocols and formats.
 - Reus able: Gen3 enforces the use of a data model, which requires data contributors to adopt a common vocabulary when providing patient medical history, data files and their associated metadata.

Demonstration of Gen3

use cases for Gen3 data commons

The Windmill User Interface: Gen3's Free Data Portal

• Windmill provides a UI for all the API functions a commons user would want:

- User login and credentials management UI.
- Aproject-based data upload / download UI.
- An interactive data exploration and cohort building application.
- An interactive data dictionary viewer.
- An interactive query building interface (GraphiQL) with autocomplete and built-in documentation.
- An integrated workspace with pre-built VMimages that support JupyterHub and R Studio.

The Gen3 SDK: Developing Tools Over Gen3 APIs

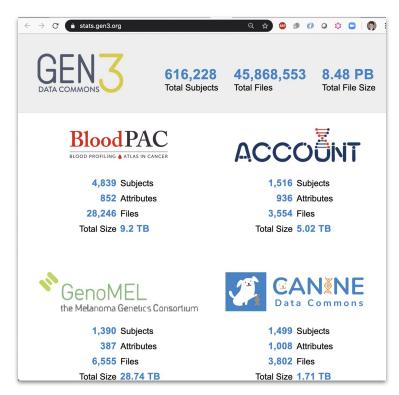
- The Gen3 SDK is an open-source software development kit (SDK) that provides tools in the Python and R programming languages for interacting with Gen3 APIs.
- For example, the Python SDK uses the 'requests' package to hit Gen3 APIs.
 - Gen3Submission is a class of functions for exporting/importing/querying data using the Sheepdog and Peregrine APIs.
 - Gen3Auth is a class of functions for use authentication and getting pre-signed URLs for data file upload/download.
- The code lives in public GitHub repos:
 - https://github.com/uc-cdis/gen3sdk-python/
 - https://github.com/uc-cdis/gen3sdk-R

```
class Gen3Submission:
        """Submit/Export/Query data from a Gen3 Submissi
        A class for interacting with the Gen3 submission
24
        Supports submitting and exporting from Sheepdog.
        Supports GraphQL queries through Peregrine.
        Args:
            endpoint (str): The URL of the data commons.
            auth provider (Gen3Auth): A Gen3Auth class i
        Examples:
            This generates the Gen3Submission class poir
            using the credentials.json downloaded from t
34
            >>> endpoint = "https://nci-crdc-demo.datacc
                auth = Gen3Auth(endpoint, refresh_file="
                sub = Gen3Submission(endpoint, auth)
```


The Gen3 SDK: Developing Tools Over Gen3 APIs

- Now I will demonstrate use of the Gen3 SDK using the BloodPAC Data Commons, which is a data commons for liquid biopsy data.
- The BPAC DC is a Cancer Moonshot project launched in 2016 and is a collaborative effort by industry, government, and academic partners and stands for "Blood Profiling Atlas in Cancer" (bloodpac.org).
- In this demonstration I will:
 - 1. Login to the data portal (data.bloodpac.org).
 - 2. Spin-up a Workspace VM within the secure Virtual Private Cloud (data.bloodpac.org/workspace)
 - 3. Launch a Jupyter Notebook to interactively run code over the BloodPAC APIs for a basic exploratory data analysis.
 - 4. Demonstrate similar functions in the Windmill data portal UI.

The Gen3 Community


democratizing translational data science

Who uses Gen3?

- The University of Chicago operates several production data commons for clients like the NCI, NIH, VA, and others.
 - Go to <u>stats.gen3.org</u> to see some examples.
- Gen3 is entirely open-source and available to the community.
 - Code and documentation for all microservices are in public GitHub repositories: https://github.com/uc-cdis/
 - Data commons operators outside of UChicago's development team are adapting and customizing Gen3 for their own purposes.
 - These 3rd party developers can clone the Gen3 repo and make changes or submit pull requests (PRs) that our developers can review and implement.

stats.gen3.org

Learn More

- github.com/uc-cdis
- gen3.org
- Gen3 Community on Slack (email us to join)
- support@datacommons.io / cgmeyer@uchicago.edu
- ctds.uchicago.edu
- Paid Summer 2020 Internshins and full-time positions are

Questions?

